Omega Binding Machine CL526 User Manual

e-mail: info@omega.com  
CL526  
Multifunction Indicator-Simulator  
 
INTRODUCTORY NOTE  
ATTENTION: THIS MANUAL MUST BE REFERRED TO INSTRUMENTS WITH SERIAL NUMBER 005980 ONWARDS  
.
This publication contains operating instructions, as well as a description of the principles of operation, of  
CL526 multifunction portable calibrator.  
This information covers all models of the instrument, including the basic equipment and its options and  
accessories.  
This manual is a complete “USER GUIDE”, providing step-by-step instructions to operate the instrument in  
each of its designed functions.  
OMEGA has used the best care and efforts in preparing this book and believes the information in this  
publication are accurate. The OMEGA products are subjected to continuous improvement, in order to pursue  
the technological leadership; these improvements could require changes to the information of this book.  
OMEGA reserves the right to change such information without notice.  
No part of this document may be stored in a retrieval system, or transmitted in any form, electronic or  
mechanical, without prior written permission of OMEGA Engeneering.  
CL526 multifunction portable calibrator uses sophisticated analogic and digital technologies. Any  
maintenance operation must be carried out by qualified personnel ONLY. We recommend to contact our  
technicians for any support requirements.  
The instrument is supplied by a Ni-MH rechargeable battery pack or by 100, 115, 230V 10% 50/60Hz line  
supply using the special power supply module provided with the CL526 when the rechargeable battery is  
ordered.  
CL526 is fully tested in conformity with the directive n°89/336/CEE Electromagnetic Compatibility. OMEGA  
shall not be liable in any event, technical and publishing error or omissions, for any incidental and  
consequential damages, in connection with, or arising out of the use of this book.  
3
 
TABLE OF CONTENTS  
1
2
GENERAL PERFORMANCE ............................................................................................................... 6  
Specifications ...................................................................................................................................................7  
Table of ranges and accuracy.....................................................................................................................9  
1.1  
1.2.1  
GENERAL FEATURES...................................................................................................................... 10  
Input and output flexibility...............................................................................................................................10  
Self calibration................................................................................................................................................10  
Keyboard........................................................................................................................................................10  
Display............................................................................................................................................................10  
Digital interface...............................................................................................................................................10  
Scale factor function.......................................................................................................................................10  
Square root function .......................................................................................................................................10  
Average measurements .................................................................................................................................10  
Simulation programs.......................................................................................................................................10  
Case ..........................................................................................................................................................11  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10  
3
4
PHYSICAL DESCRIPTION ................................................................................................................ 12  
FUNCTIONAL DESCRIPTION........................................................................................................... 13  
Power supply..................................................................................................................................................13  
Keyboard........................................................................................................................................................13  
Input circuit.....................................................................................................................................................14  
Microprocessor...............................................................................................................................................15  
Firmware ........................................................................................................................................................15  
Digital display .................................................................................................................................................15  
Digital to analog converter..............................................................................................................................15  
Battery charger. Operation from line source...................................................................................................16  
Digital interface...............................................................................................................................................16  
Resistance and Rtd measurements...........................................................................................................16  
Resistance and Rtd simulation ..................................................................................................................17  
Thermocouples input-output circuit............................................................................................................17  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
4.10  
4.11  
4.12  
5
6
7
UNPACKING ...................................................................................................................................... 18  
PRE-OPERATIONAL CHECK ........................................................................................................... 19  
ELECTRICAL CONNECTIONS.......................................................................................................... 20  
Wiring practice...............................................................................................................................................20  
Thermocouple wires .......................................................................................................................................21  
7.1  
7.2  
8
9
POWER SUPPLY ............................................................................................................................... 23  
Rechargeable batteries ..................................................................................................................................23  
Battery Charger ..............................................................................................................................................23  
How to maximize the battery life.....................................................................................................................23  
8.1  
8.2  
8.3  
OPERATION & APPLICATIONS ....................................................................................................... 24  
Power ON.......................................................................................................................................................24  
Battery voltage indication ...............................................................................................................................24  
Operating mode set up...................................................................................................................................24  
IN - OUT mode selection ...........................................................................................................................25  
Parameter or sensor selection...................................................................................................................25  
Tecnical unit...............................................................................................................................................26  
Decimal point position................................................................................................................................26  
International Temperature Scale................................................................................................................26  
Rj mode .....................................................................................................................................................26  
Convert function.........................................................................................................................................26  
Average readings.......................................................................................................................................27  
IN-OUT data memories..............................................................................................................................27  
Data memory configuration........................................................................................................................27  
Data memory manual recall ..................................................................................................................28  
Data memory automatic scanning.........................................................................................................28  
Manual step advance.................................................................................................................................29  
Automatic simulation cycle ........................................................................................................................29  
9.1  
9.2  
9.3  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
9.3.6  
9.3.7  
9.3.8  
9.3.9  
9.3.9.1  
9.3.9.2  
9.3.9.3  
9.3.9.4  
9.3.10  
9.3.10.1  
9.3.10.2  
9.3.11  
9.3.12  
9.3.13  
Simulation cycle selection.....................................................................................................................29  
Simulation cycle....................................................................................................................................31  
Rj compensation mode check....................................................................................................................31  
Scale factor program .................................................................................................................................32  
Installation parameter procedure ...............................................................................................................34  
Firmware version code - Serial number ................................................................................................34  
9.3.13.1  
4
 
9.3.13.2  
10  
External Rj compensation.....................................................................................................................34  
DIGITAL INTERFACE........................................................................................................................ 35  
Digital interface data program mode...............................................................................................................35  
Digital output wiring practice...........................................................................................................................35  
TTL to RS 232 adapter...................................................................................................................................36  
Communication protocol from CL526 to a PC ................................................................................................36  
Computer request for CL526 settings.............................................................................................................40  
Communication programs ..............................................................................................................................44  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
11  
MAINTENANCE.................................................................................................................................. 46  
Safety recommendations................................................................................................................................46  
Faulty operating conditions.............................................................................................................................46  
Protection fuses..............................................................................................................................................47  
Storage...........................................................................................................................................................47  
11.1  
11.2  
11.3  
11.4  
5
 
1
GENERAL PERFORMANCE  
A complete system for testing, measuring and calibrating built in a single, compact portable instrument. The portable  
calibrator CL526 is a multifunction instrument designed to meet, in a modern and practical way, the needs of  
instrumentation engineers, both in laboratory and field work.  
Accurate, compact, rugged, easy to use; the ideal solution for measuring and simulating:  
millivolts  
volts  
milliamperes (active and passive loop)  
ohms  
thermocouples  
resistance thermometers  
The CL526 has been developed using the most advanced microprocessor technology to provide high accuracy on  
extended ranges and a powerful operating flexibility.  
The modular firmware includes the algorithms of thermocouples and resistance thermometers in accordance with IEC,  
DIN standards. IPTS68 and ITS90 linearization are memory stored and can be selected through the keyboard.  
The simulation-measurement of resistance and temperature with resistance thermometer uses a special proprietary  
active circuit.  
An unique internal automatic Rj compensation system allows the CL526 to provide accurate input and output readings  
over wide operating conditions, with a temperature range from -5°C to +50°C. Further, external compensation is  
available with temperature adjustable from -50°C to +100°C.  
The selection of operating functions is made on a polycarbonate thermoformed membrane keyboard which assures up to  
one million operations per key.  
Two thick film membrane “slidewires” are used to set the simulated signal value.  
Measured and simulated values are indicated on a high quality LCD dot matrix display which provides good contrast  
even in poor light conditions.  
A menu-driven procedure allows for the generation of up to 60 memory stored values, or, for continuous or step ramp  
values.  
The instrument carries out mathematical functions for averaging unstable input signals and, in combination with scale  
factor, square root calculation.  
The case, made in shock-resistant ABS, is ergonomically designed for easy practical use.  
The instrument is powered by four Ni-MH rechargeable batteries; an external battery charger is supplied as a standard  
accessory.  
6
 
1.1  
Specifications  
IN/OUT parameters:  
- mV, V, mA,  
- Tc type J, K, T, R, S, B, N, C, E, F, U, L, G, D  
- Rtd type Pt100, Ni100 and Ni120  
Reference junction compensation:  
- automatic internal with Pt100 sensor from -5°C to +50°C;  
- external with manual setting from -50°C to +100°C  
Rj compensation drift:  
± 0.015°C/°C  
Rj compensation error:  
±0.15°C  
In/Out ranges:  
see following tables  
Resolution:  
see following tables  
Limits of error:  
see following tables  
Common mode rejection:  
> 130 dB at 50/60 Hz  
Normal mode rejection:  
> 60 dB at 50/60 Hz  
Temperature stability:  
span  
zero  
± 0.005% of the reading/°C  
± 0.2 µV /°C  
Output impedance (emf output and Tc):  
< 0.5 with maximum current of 0.5 mA  
Input impedance:  
> 10 M(> 1Mon 10 V range)  
Source resistance effect:  
1 µV error for 1000 source resistance  
Rtd and simulation excitation current:  
from 0.2 to 5 mA  
Rtd and measurement excitation current:  
0.25 mA  
Rtd cable compensation:  
up to 100 (each wire)  
Shunt resistance (mA ranges):  
38 Ω  
Maximum resistance load:  
1000 ( 20mA )  
Maximum input over voltage dc:  
50 V (mV, V, Tc)  
5 V (Rtd)  
Display:  
high contrast dot matrix LCD (7x5 dots per character -16 characters)  
Engineering unit indications:  
up to 4 characters shown directly on the display  
Scale factor:  
zero and span programmable within -10000 and +10000  
Square root:  
in combination with scale factor (display limits 0 and +2500)  
7
 
Calibration:  
semi-automatic procedure  
Power supply:  
n. 4 Ni-MH batteries 1.25 V 1.2 A/h  
Battery life:  
4 hours with 20 mA simulation mode  
12 hours on measuring mode  
Recharge time:  
10 hours with instrument switched -Off- (at 90%)  
Battery voltage:  
value indicated on the display  
Program release identification:  
release code on the display  
Operating environment temperature range:  
from -5°C to +50°C  
Storage temperature range:  
from -30°C to +60°C  
Case:  
ABS with internal metal coating  
Dimensions:  
120x60x230 mm  
Weights:  
net 1 Kg  
gross with packing 2.5 Kg  
8
 
1.2.1  
Table of ranges and accuracy  
Sensor or  
parameter  
Total range  
High accuracy  
range  
Resolution  
Limit of error  
Tc type J  
Tc type K  
Tc type T  
Tc type R  
Tc type S  
Tc type B  
Tc type C  
Tc type G  
Tc type D  
Tc type U  
Tc type L  
Tc type N  
Tc type E  
Tc type F  
-210 to +1200°C  
-346 to +2192°F  
-190 to +1200°C  
-310 to +2192°F  
0.1°C  
0.1°F  
± (0.02% of rdg +0.1°C)  
± (0.02% of rdg +0.18°F)  
-270 to +1370°C  
-454 to +2498°F  
-150 to 1300°C  
-220 to 2372°F  
0.1°C  
0.1°F  
± (0.02% of rdg +0.1°C)  
±(0.02% of rdg +0.18°F)  
-270 to +400°C  
-454 to +752°F  
-150 to 400°C  
-202 to 752°F  
0.1°C  
0.1°F  
± (0.02% of rdg +0.1°C)  
±0.02% of rdg +0.18°F)  
0 to +1760°C  
32 to +3200°F  
500 to 1700°C  
932 to 3092°F  
0.1°C  
0.1°F  
± (0.02% of rdg +0.3°C)  
± (0.02% of rdg +0.154°F)  
0 to +1760°C  
32 to +3200°F  
600 to 1760°C  
1112 to 3200°F  
0.1°C  
0.1°F  
± (0.02% of rdg +0.3°C)  
± (0.02% of rdg +0.154°F)  
200 to +1820°C  
392 to +3308°F  
1000 to 1820°C  
1832 to 3308°F  
0.1°C  
0.1°F  
±(0.02% of rdg +0.4°C)  
± (0.02% of rdg +0.172°F)  
0 to +2300°C  
32 to +4172°F  
1150 to 2300°C  
2102 to 4172°F  
0.1°C  
0.1°F  
± (0.02% of rdg +0.4°C)  
± (0.02% of rdg +0.172°F)  
0 to +2300°C  
32 to +4172°F  
300 to 2000°C  
572 to 3632°F  
0.1°C  
1°F  
± (0.02% of rdg +0.4°C)  
± (0.02% of rdg +0.172°F)  
0 to +2300°C  
32 to +4172°F  
300 to 2000°C  
572 to 3632°F  
0.1°C  
0.1°F  
± (0.02% of rdg +0.4°C)  
± (0.02% of rdg +0..72°F)  
-200 to +400°C  
-328 to +752°F  
-150 to +400°C  
-238 to +752°F  
0.1°C  
0.1°F  
±(0.02% of rdg +0.1°C)  
± (0.02% of rdg +0.18°F)  
-200 to +760°C  
-328 to +1400°F  
-200 to 760°C  
-328 to 1400°F  
0.1°C  
0.1°F  
± (0.02% of rdg +0.1°C)  
± (0.02% of rdg +0.18°F)  
0 to 1300°C  
+32 to 2372°C  
0 to 1300°C  
32 to 2372  
0.1°C  
0.1°F  
±(0.02% of rdg +0.1°C)  
± (0.02% of rdg +0.18°F)  
-270 to +1000°C  
-454 to +1832°F  
-200 to +1000°C  
-328 to +1832°F  
0.1°C  
0.1°F  
±(0.02% of rdg +0.1°C)  
± (0.02% of rdg +0.18°F)  
0 to 1400°C  
0 to 1400°C  
0.1°C  
±(0.02% of rdg +0.1°C)  
32 to 2552°F  
32 to 2552°F  
0.1°F  
± (0.02% of rdg +0.18°F)  
Pt 100 (IEC)  
Pt100 (JIS)  
Pt100 (US)  
-200 to +850°C  
-328 to +1562°F  
-200 to +850°C  
-328 to +1562°F  
0.1°C  
0.1°F  
±(0.02% of rdg +0.1°C)  
± (0.02% of rdg +0.18°F)  
-200 to +600°C  
-328 to +1562°F  
-200 to +600°C  
-328 to +1562°F  
0.1°C  
0.1°F  
±(0.02% of rdg +0.1°C)  
± (0.02% of rdg +0.18°F)  
-200 to +850°C  
-200 to +850°C  
0.1°C  
±(0.02% of rdg +0.1°C)  
-328 to +1562°F  
-328 to +1562°F  
0.1°F  
± (0.02% of rdg +0.18°F)  
Ni100  
Ni120  
-60 to +180°C  
-60 to +180°C  
-76 to +356°F  
0.1°C  
0.1°F  
±(0.02% of rdg +0.1°C)  
± (0.02% of rdg +0.18°F)  
0 to +150°C  
0 to +150°C  
0.1°C  
±(0.02% of rdg +0.1°C)  
32 to +302°F  
32 to +302°F  
0.1°F  
± (0.02% of rdg +0.18°F)  
mV  
mV  
-18.000 to +22.000  
-10.00 to +100.00  
-10.000 to +22.000  
1 µV  
± (0.01% of rdg +3µV)  
-10.000 to +21.000  
+21.00 to +53.00  
+53.00 to +100.00  
10 µV  
10 µV  
10 µV  
± (0.01% of rdg +3µV)  
± (0.01% of rdg +3µV)  
± (0.01% of rdg +6µV)  
mV  
V
0.0 to +1000.0  
0.000 to +10.000  
0.0 to +1000.0  
0.000 to +10.000  
100 µV  
1 mV  
± (0.01% of rdg +40µV)  
± (0.02% of rdg +0.4mV)  
mA  
0.000 to +21.000  
0.000 to +21.000  
1 µA  
± (0.02% of rdg +0.5 µA)  
(IN)  
(OUT)  
0.0 to 400.0 Ω  
0.0 to 400.0 Ω  
0.0 to 400.0 Ω  
0.0 to 400.0 Ω  
10 mΩ  
10 mΩ  
± (0.02% of rdg +38m)  
± (0.03% of rdg +78m)  
Note:  
Accuracy shown are based on tests at 23°C ±5°C for 360 days  
All Input ranges: additional error ± 1 digit  
Traceability chart to WECC or SIT available on request  
9
 
2
GENERAL FEATURES  
2.1  
Input and output flexibility  
Advanced flexibility of performance has been achieved using microprocessor technology. Each instrument, through a  
menu-driven procedure, allows measurement or simulation of mV, V, mA, , or any normalized IEC, DIN and JIS  
thermoelectric sensor J, K, T, R, S, B, C, U, L, N, E, F, G, D, Pt100, Ni100 and Ni120.  
The microprocessor performs automatic polynomial linearization and cold junction compensation to assure high  
accuracy. °C or °F selection can be made through a reconfiguration set-up.  
2.2  
Self calibration  
The hardware-firmware design allows an automatic calibration of the instrument. A precision source (from 0 to 10V), a  
0°C reference system, a standard resistor of 400(±0.02% accuracy) and an ohmmeter are necessary. The calibration  
procedure is protected by a security code.  
2.3  
Keyboard  
A thermoformed metal-click tactile polycarbonate membrane keyboard, with a working life of one million operations per  
key, seals the internal electronics from the surrounding environment.  
Contact closure of membrane keys is acknowledged, as a coded signal, directly by the microprocessor. Two membrane  
slidewires (patent pending) allow operator setting of the simulation value.  
2.4  
Display  
The high contrast alphanumeric LCD display with dot matrix (7x5 dots per character-16 characters) allows easy readings,  
even in poor light conditions, and simultaneously indicates the active function (measured or simulated), engineering unit  
and type of sensor or signal.  
2.5  
Digital interface  
A digital interface with TTL logic levels is available as standard for communication with external units.  
A serial data port provides communication capability at a logic level of 0-5V (four wires: Tx, Rx, GND, Vcc).  
A seven-pole cable, with mini DIN connector is supplied as a standard accessory, and a TTL to RS 232 adaptor is  
available as an option.  
2.6  
Scale factor function  
Easy menu-driven set-up to read or simulate electrical signal value in terms of engineering units. Four programmable  
alphanumeric characters are available on the display to show the symbol of the parameter (i.e. mbar, %RH, %CO, etc.).  
The display will indicate the scaled input/output value.  
2.7  
Square root function  
Can be programmed during the set-up procedure (e.g. linear ranges only) to obtain direct readings of flow from a dP  
transmitter signal. The display limits are 0 and +2500.  
2.8  
Average measurements  
For the measurement of unstable input signals by a progressive averaging of a programmable number of conversions.  
2.9  
Simulation programs  
Menu-driven set-up to generate:  
10  
 
a continuous or step ramp output where the total time, the start point, the end point and the size of the step are  
requested by the set-up procedure to run the program;  
a manual repeat increment through keyboard;  
an automatic sequence of up to 60 stored values (20 groups of 3 memories).  
2.10  
Case  
The case is designed for easy hand held operation and transportation.  
The body is injection moulded, shock-resistant ABS with internal metal coating .  
A leather carrying case with shoulder strap is supplied with the instrument as a standard accessory.  
11  
 
3
PHYSICAL DESCRIPTION  
The CL526 portable calibrator consists of a rugged and compact case, a mother board with all base functions, a  
daughter board for the auxiliary functions, a tactile membrane keyboard, an LCD display and a group of four nickel-  
cadmium rechargeable batteries.  
The internal surface of the case is metal coated to improve the characteristics of electrical noise shielding and thermal  
equalization of all internal circuits.  
The battery container is located on the lower part of the case, and is accessible through a cover fastened by a metal  
screw.  
The two halves of the case are joined together by four metal screws located on the back side.  
The leather case, with shoulder strap, assures better protection of the instrument against mechanical knocks or  
scratches.  
12  
 
4
FUNCTIONAL DESCRIPTION  
The CL526 portable calibrator block diagram is shown below.  
External battery  
charger  
Ni-MH  
Batteries  
Reference  
junction  
Converters for  
backligh  
Power supply  
A
Rj signals  
Digital  
interface  
Display  
A
D/A  
(converter)  
Microprocessor  
Keyboard  
Signal OUT  
output signal  
output signal  
Comparator  
and buffer  
Gain Control  
IN/OUT  
Switch  
IN/OUT terminals  
power supply  
microprocessor (central unit + memory)  
input circuit  
cold junction compensator (Rj)  
LCD display  
operative keyboard  
digital to analog converter  
4.1  
Power supply  
The instrument is powered, if not otherwise specified with the order, by four internal batteries that can be recharged  
through an external charger module supplied as a standard accessory.  
The internal batteries are Ni-MH rechargeable AA type with a nominal voltage of 1.25 V. The jumper “J1” (mounted on  
the mother board), when soldered into the “B” position, allows the instrument to be powered by the four internal  
rechargeable batteries or, if needed, directly from the power line. The voltage of the four batteries in series  
(approximately 5V) is connected to the input of a hybrid circuit.  
Pressing the <ON> key will provide the two levels of voltage for the circuitry of the instrument:  
+ 5 V for logic and analog circuits  
- 5 V for analog circuits  
The second section, on the power supply circuit, is configured as a voltage multiplier generating for the final output stage,  
a voltage of 24V dc. The above voltage levels are required to work with an external resistance of 1000maximum when  
in current simulation mode (20 mA - 20 V). During operative modes, other than current simulation a diode de-energizes  
the hybrid circuit reducing the overall power consumption.  
Recommendations and instructions to convert the instrument for a power supply with normal alkaline batteries are  
described in par. 8.3.  
4.2  
Keyboard  
The front panel is a tactile polycarbonate membrane keyboard, and has a working life of one million operations per key.  
The contact closure of the membrane keyboard is acknowledged as a coded signal by the microprocessor that  
recognizes the operators instructions.  
Keys are interconnected on a 4x3 matrix; the microprocessor identifies directly the active key.  
The values of the <L> and <L> keys (membrane slidewires) are acknowledged through the converters built in the  
microprocessor chip.  
13  
 
ON  
Power ON switch  
OFF  
Power OFF switch  
IPTS68-ITS90  
Rj  
<L> <L>  
Temperature Scale selection  
Reference junction internal-external selection  
Membrane slidewires to set the simulation value (to scroll the menu of input tables and  
library of engineering characters).  
Memory load  
Parameter selection or decimal point position  
Low limit setting of the simulation cycle  
High limit setting of the simulation cycle  
Step value setting of the simulation cycle  
Simulation cycle mode selection  
Soak time setting of the simulation cycle  
Total time setting of the simulation cycle  
In/Out memories  
STORE  
<> <>  
START  
END  
STEP  
MODE  
SOAK  
TIME  
0, 1, 2  
°C/°F  
Technical unit selection  
SELECT  
AVERAGE  
IN/OUT  
CONVERT  
AUTORAMP  
PROGRAM X  
BATTERY  
ENTER  
SHIFT  
Parameter selection procedure  
Average measurements  
In/Out mode selection  
Technical unit to equivalent electrical signal  
Ramp program start  
Scale factor program  
Battery voltage indication  
Memory load key  
Key secondary function  
LAMP  
Display backlight switch (special - only on request)  
4.3  
Input circuit  
The input circuit is based on an output buffer wired as an error amplifier. The input signal drives the negative channel ( - )  
of the integrated circuit.  
14  
 
The microprocessor recognizes if the D/A converter is generating a voltage signal higher or lower than the input signal  
and gives correcting instructions to keep the input amplifier output on the nearest value to zero. In the above conditions  
the microprocessor acknowledges the value of the input signal as equivalent to the setting of the digital to analog  
converter.  
µ
P
Display  
D/A  
+
-
IN  
Ouput buffer / input amplifier  
4.4  
Microprocessor  
The microprocessor handles all the logic functions of the instrument, performs the linearization for non linear  
transducers, compensates for the reference junction temperature, drives the digital display and acknowledges all  
operator instructions.  
The heart of the circuit is a single-chip microcomputer that utilizes HCMOS technology to provide the low power  
characteristics and high noise immunity of CMOS plus the high speed operation of HMOS.  
The microcomputer provides highly sophisticated, on- chip peripheral functions including: 256 bytes of static RAM, an 8  
channel analog to digital (A/D) converter (used to read the Rj value, the setting of the input comparator, the battery  
package voltage and the value of the two membrane slidewires), a serial communication interface (SCI) subsystem, and  
a serial peripheral interface (SPI) subsystem.  
The microprocessor works with an 8-bit communication bus to the EPROM and EEPROM memories and is interfaced  
with a decoder, a latch of address and an inverter-driver.  
4.5  
Firmware  
The operating system firmware handles all logic instructions to the internal peripheral circuits and performs the  
computation of the linearization equations.  
The application system firmware is resident on the non-volatile memory (EEPROM) of the microprocessor chip. It is used  
to store the installation parameters (autocalibration data, programs data, etc.)  
4.6  
Digital display  
The digital display, mounted on an auxiliary board, uses high contrast LCD technology (STN liquid). Character  
generation is made by a secondary dedicated microprocessor driven by two integrated circuits with signal input from the  
bus of the main microprocessor.  
The 16 characters are displayed with a 7x5 dot matrix. On request, CL526 can be equipped with a backlight device for  
easy readings in poor light conditions.  
4.7  
Digital to analog converter  
A 14-bit digital to analog device, driven directly by the microprocessor converts the digital value of the selected  
parameter into an analog current output.  
The current signal is converted into a voltage signal across a resistance strip network.  
Two low thermal emf relays select one of the four available output points as a function of the selected range. The ranges  
are:  
-18  
-0.2 to  
-0.2 to  
to  
+22 mV  
+54 mV  
+100,1 mV  
+1001 mV  
+10.010 V  
Tc type R, S, B, T and the negative portion of all Tc’s  
all other thermocouples  
100 mV range and Rtd  
1000 mV range and 0-20 mA range  
10 V range  
-2  
to  
-0.02 to  
The above signal, through an output buffer, is sent to an integrated circuit that will generate the voltage or current  
requested by the operator keyboard settings.  
15  
 
1000 mV  
µ P  
D/A  
x 1000 multipl.  
100 mV  
54 mV  
22 mV  
Keyboard  
Out  
4.8  
Battery charger. Operation from line source  
ATTENTION ONLY FOR USE WITH NI-MH BATTERIES.  
:
The auxiliary module, supplied as a standard accessory, allows operation from 110-120 Vac or 220-240 Vac 50/60 Hz.  
The calibrator, if needed, can be operated directly from a line source through the charger. The plastic case of the battery  
charger incorporates the line voltage plug and a cable with connector for interconnection to the instrument. The charger  
circuit is designed with an insulating transformer and a voltage stabilizer circuit.  
The step-down transformer reduces the power line (110-120 Vac or 220-240 Vac nominal) to a value of 10 Vac. The  
above voltage is full wave rectified, filtered and stabilized. The output voltage of 6,6 V is the ideal value to recharge the  
internal Ni-MH batteries.  
4.9  
Digital interface  
The digital interface circuit is essentially based on the serial communication interface subsystem (SCI) on the chip of the  
microprocessor at 0 to +5V level.  
An adaptor to convert TTL to RS 232 voltage levels can be obtained on request.  
4.10  
Resistance and Rtd measurements  
The resistance thermometer (Rtd) is connected to terminals A-B-C in a 3-wire configuration (see figure on the next  
page).  
Two constant current generators are provided by the auxiliary module for supplying the Rtd.  
The first half of “IC1” generates the negative current I = - 0.25 mA that flows from terminal B to terminal A through the  
A
Rtd and line resistances RLA and RLB. I is kept constant by the microprocessor that controls the zero voltage level.  
A
The second half of “IC 1”, with the associated resistors, generates the positive current I that flows from terminal C to  
C
terminal B through line resistances RLC and RLB. Current I is kept exactly = 2 x I , so the resultant current I = I - I  
A
C
A
B
C
flows through RLB. The input measured signal across terminals A and B is the algebraic sum of drop voltages across  
Rtd and line resistances RLA and RLB. As drop voltages across RLA and RLB are exactly the same (providing that line  
resistances RLA and RLB are equals), but with opposite poles, the resultant voltage across terminals A and B is  
proportional to Rtd resistance variation, with no influence of line resistance.  
The measured signal is then handled by the microprocessor that linearizes it and displays the corresponding value in  
engineering units.  
IA = - 0.25 mA  
RLA  
A
IC1/1  
Rtd  
IB = IC - IA = + 0.25 mA  
RLB  
B
IC = + 0.5 mA  
C
IC1/2  
RLC  
16  
 
4.11  
Resistance and Rtd simulation  
CL526 portable calibrator is equipped with an electronic circuit for the active simulation of platinum and nickel resistance  
thermometers and resistances.  
It is based on the assumption that the instrument to be calibrated will supply the excitation current to the sensor; this  
current must be between 0.2 and 5 mA ( typical working values ).  
A lower value will generate an insufficient precision level and a higher current won’t permit the simulation of high  
resistance values ( maximum voltage drop on the simulated resistance is 2 V ).  
The excitation current must be applied to the pertinent terminals as indicated in par. 7.1 (simulation).  
That current, flowing through resistance “ Ra“ (precision ± 0.01%) will generate a voltage drop that will be amplified and  
sent to the D/A converter. The output amplifier will simulate the variation of the output resistance as a function of the  
value set by the operator through the keyboard.  
The connection between “+” and “-” terminals must be left open.  
Ouput amplifier  
Set  
Out  
µP  
D/A  
Instrument  
to be  
Ref  
calibrated  
Keyboard  
Input amplifier  
Ra  
4.12  
Thermocouples input-output circuit  
A thermocouple, a temperature sensor, in its most common form consists of two wires of different composition, joined  
together at one end. The two wires are joined together at two points which have different temperatures.  
Tc wires  
Reference Junction  
emf  
output  
Copper wires  
Measuring junction  
The reference junction is also often, but less preferably, called the “cold” junction.  
The temperature of the reference junction can be held constant or its variation electrically compensated in the  
associated measuring instrumentation.  
The second junction is the measuring junction (or “hot” junction).  
A thermocouple is a practical tool for temperature sensing because it generates a measurable electrical signal.  
The signal is proportional to the temperature difference between the measuring and reference junctions and is defined,  
by means of tables, based on the International Practical Temperature Scales (IPTS68 or ITS90).  
The portable calibrator CL526 has the reference junction located in the negative (black) terminal post. To improve  
overall accuracy the terminals are designed with a very low thermal capacity.  
Inside the body of the negative terminal is placed a thin film Pt100 resistance thermometer that dynamically measures,  
with high accuracy, the temperature of the reference junction.  
The microprocessor uses the above signal (Pt100) to adjust the input signal to compensate for the Rj temperature.  
Reference junction compensation can be internal or external, depending upon the application requirements.  
17  
 
5
UNPACKING  
Remove the instrument from its packing case and remove any shipping ties, clamps, or packing materials.  
Carefully follow any instructions given on any attached tags.  
Inspect the instrument for scratches, dents, damage to case corner etc. which may have occurred during shipment.  
If any mechanical damage is noted, report the damage to the shipping carrier and then notify OMEGA directly or its  
nearest agent, and retain the damaged packaging for inspection.  
A label, inside the battery container, indicates the serial number of the instrument.  
Refer to this number for any inquiry for service, spare parts supply or application and technical support requirements.  
OMEGA will keep a data base with all information regarding your instrument.  
18  
 
6
PRE-OPERATIONAL CHECK  
The CL526 portable calibrator is powered by four Ni-MH rechargeable batteries.  
The external battery charger, supplied as standard, may be ordered for either 110/120 Vac or 220/240 Vac power  
source. To modify the charger’s power voltage follow the instructions in par. 8.2.  
Before using the instrument carefully verify the nominal voltage value of the charger; in case of modification do not  
forget to correct the pertinent label.  
The instrument should be used in environments where the temperature does not exceed the specified limits (from -5°C to  
+50°C) and where the relative humidity is lower than 95%.  
Out 1248.3°C Tc  
In case of “low” battery condition (voltage lower than 4.6 V) the display will show the appropriate symbol. An empty  
symbol means that the battery package has enough energy for about 30 minutes operation. A black symbol means that  
batteries charge is below the minimum acceptable level: operation of the instrument is no longer possible. In this  
condition the instrument batteries must be recharged.  
WARNING  
THE INSTRUMENT IS SUPPLIED WITH NI-MH RECHARGEABLE BATTERIES  
DO NOT USE NORMAL ALKALINE BATTERIES  
.
.
ALKALINE BATTERIES  
,
WHEN CONNECTED TO A DC VOLTAGE SUPPLY UNDERTAKE AN OVERHEATING PROCESS WITH A RISK OF  
.
EXPLOSION  
19  
 
7
ELECTRICAL CONNECTIONS  
Appropriate extension wires should be used between the thermocouple (or instrument under calibration) and the CL526  
unless the thermocouple leads permit direct connection.  
Make sure that both thermocouple and compensating cable are connected with the correct polarity.  
If in doubt, the polarity of the compensating leads can be checked by connecting a length of lead to the indicator,  
shorting the free ends of the wires together and noting that the indicator reading increases when the wires connection  
is heated.  
Color codes of compensating cables change in different countries. Check the appropriate table.  
For Rtd connection use a cable of adequate gauge to lower the overall input resistance.  
The use of a cable with a good resistance balance between conductors is also necessary.  
Table A  
Colour code & polarity for extension wires  
Thermocouple  
Wires  
Colour  
code  
Chromel  
( + ) Chromel  
Purple  
E
Constantan  
( - ) Constantan  
( + ) Iron  
Red  
Iron  
White  
Red  
J
Constantan  
( - )Constantan  
Chromel  
( + ) Chromel  
Yellow  
K
Alumel  
( - )Alumel  
( + ) Copper  
( - ) Alloy 11  
Red  
Pt 13% Rh  
Black  
Red  
R
Platinum  
Pt 10% Rh  
( + ) Copper  
( - ) Alloy 11  
( + ) Copper  
Black  
Red  
S
Platinum  
Copper  
Blue  
Red  
T
Constantan  
( - ) Constantan  
( + ) Copper  
Pt 6% Rh  
B
Pt 30% Rh  
( - ) Copper  
( + ) Nicrosil  
( - ) Nisil  
Nicrosil  
Orange  
Red  
N
Nisil  
7.1  
Wiring practice  
Although the CL526 portable calibrator is designed to be insensitive to transients or noise, the following  
recommendations should be followed to reduce ac pick up in the signal leads and to ensure good performance.  
The input leads should not be run near ac line wiring, transformers and heating elements.  
Input/output leads should, if possible, be twisted and shielded with the shield grounded at the end of the cable.  
When shielded cables are used the shield must be connected to the positive terminal.  
Above figure shows some examples of input/output wiring and connections.  
20  
 
Examples of input /output wiring and connections  
MEASURE CH1  
SIMULATION CH1  
Thermocouples, mV  
mA Active loop  
Thermocouples, mV  
mA Active loop  
+PS  
+IN  
+PS  
+IN  
+
-
+
-
-
-
-
-
-IN  
-IN  
RTD  
RTD  
mA Passive Loop  
mA Passive Loop  
+PS  
+IN  
+PS  
+IN  
+
-
+
-
-
-IN  
-IN  
RTD  
RTD  
Rtd (2 wire)  
Rtd (2 wire)  
+PS  
+IN  
+PS  
+IN  
-
-IN  
-IN  
RTD  
RTD  
Rtd ( 3 wire)  
Rtd ( 3 wire)  
+PS  
+IN  
+PS  
+IN  
-
-
-IN  
-IN  
RTD  
RTD  
Rtd (4 wire)  
Rtd (4 wire)  
NOT CONNECTED  
+PS  
+IN  
+PS  
+IN  
-
-
-IN  
-IN  
RTD  
RTD  
7.2  
Thermocouple wires  
When making measurements where additional wires have to be connected to the thermocouple leads, care must be  
exercised in selecting these wire types, not only where they are claimed to be of the same composition as the  
thermocouple involved, but, also, of their "quality".  
Performance results where high precision is required and in circumstances where some types of thermocouple wire  
leads are added to the original installation should be reviewed carefully for the impact of the choice of the additional wire  
leads.  
The quality of thermocouple wire is established by the limit of error to be expected with its use.  
There are three recognizable levels of quality:  
- Special or Premium grade  
- Standard grade  
- Extension wire grade  
The error limits determining the grade quality differ from thermocouple type to thermocouple type, reflecting the degree of  
difficulty in maintaining the precise levels of purity of the metal used.  
21  
 
The table below summarizes the error limits for Premium and Standard grades, while Extension grade wire is  
characterized by limits of error exceeding those in the table.  
Errors up to ±4°C may be experienced when using Extension grade thermocouple wire for J and K thermocouples.  
Limit of Error of thermocouple wires  
The range indicated is the temperature limit for the indicated errors Cold junction at 0 °C  
Tc  
Class 1  
Class 2  
Class 3  
type T  
0.5°C (-40 to +125°C)  
0.004 . T (T >125°C)  
-40 to +350°C  
1.5°C (-40 to 375°C)  
0.004.T (T >375°C)  
-40 to 800°C  
1.5°C (-40 to 375°C)  
0.004.T (T >375°C)  
-40 to 750°C  
1°C (-40 to 133°C)  
0.0075 . T (T >133 °C)  
-40 to +350°C  
2.5°C (-40 to 333 °C)  
0.0075.T (T >333°C)  
-40 to 900°C  
2.5°C (-40 to 333 °C)  
0.0075.T (T >333°C)  
-40 to 750°C  
1°C (-67 to 40°C)  
0.015. T (T <-67°C)  
-200 to 40°C  
2.5°C (-167 to +40°C)  
0.015.T (T <-167°C)  
-200°C to 40°C  
2.5°C (-167 to +40°C)  
0.015.T (T <-167°C)  
-----  
T range  
type E  
T range  
type J  
T range  
type K e N  
1.5°C (-40 to 375°C)  
0.004.T (T >375°C)  
-40 to 1000°C  
2.5°C (-40 to 333 °C)  
0.0075.T (T >333°C)  
-40 to 1200°C  
2.5°C (-167 to +40°C)  
0.015.T (T <-167°C)  
-200°C to 40°C  
T range  
type R e S  
1°C (0 to 1100°C)  
1 + 0.003 (T-100)  
(T >1100°C)  
1.5°C (-40 to 600 °C)  
0.0075.T (T >600°C)  
4°C (600 to +800°C)  
0.005.T (T>800°C)  
T range  
type B  
0 to 1600°C  
0 to 1600°C  
1.5°C (-40 to 600 °C)  
0.0075.T (T >600°C)  
----  
1°C (0 to 1100°C)  
1 + 0.003 (T-100)  
(T >1100°C)  
-----  
4°C (600 to +800°C)  
0.005.T (T>800°C)  
T range  
600 to 1700°C  
600 to 1700°C  
22  
 
8
POWER SUPPLY  
8.1  
Rechargeable batteries  
The CL526 portable calibrator is powered by four built-in rechargeable batteries. The instrument is shipped with an  
average level of charge. After unpacking, a full charge of the batteries is recommended; connect the instrument to the  
charger module (“OFF” condition) for a period of 10 hours minimum.  
The Ni-MH rechargeable batteries do not suffer when used in cyclic operations.  
Cyclic operation is understood as a method of operation by which the battery is continually charged and discharged.  
Note that a battery, at its lower limit of discharge, risks a non uniform cell polarization: this condition makes it difficult to  
recharge with the charger supplied.  
Avoid leaving the instrument, with batteries totally or partially discharged, for a long time without recharging.  
To charge the batteries use only the original supplied charging module. The module incorporates protection and current  
limiting devices not normally found in other commercial chargers.  
When the CL526 is connected to the battery charger module, by pressing keys <SHIFT> + <BATTERY> the  
following indication will be displayed:  
Battery: Line Op  
If a numeric value appears, it indicates that the charger is probably faulty.  
Replace the battery charger module; if the indication persists, contact OMEGA -Technical Assistance Dept.  
WARNING:  
AVOID USING ALKALINE BATTERIES ON AN INSTRUMENT SET FOR NI-MH RECHARGEABLE BATTERIES  
.
THIS IS EXTREMELY DANGEROUS AS IT COULD CAUSE THE ALKALINE BATTERIES TO EXPLODE  
.
8.2  
Battery Charger  
The external battery charger is configured, before shipment, for a supply voltage of 110-120 Vac or 220- 240 Vac, upon  
order specification. The nominal voltage value is indicated on the front label of the charger. Check for the correct input  
voltage before connect it to the line.  
8.3  
How to maximize the battery life  
Disconnect the ac mains supply when the battery is charged. Use the battery until it is completely discharged.  
Leaving the ac mains supply plugged in will decrease the life of the battery.  
Keeping the battery terminal clean will help maximize the operating time. Periodically wipe the positive and negative  
terminals with a dry cloth.  
Removing and replacing the batteries will ensure electrical contact. This should be done when using a battery that has  
not been used for a long time.  
Note that the operating time decreases at low temperatures.  
A Ni-MH battery can be recharged about 500 times when used with the recommended instructions.  
When replacing the Ni-MH batteries with a new set always replace simultaneously the four pieces.  
23  
 
9
OPERATION & APPLICATIONS  
9.1  
Power ON  
ATTENTION  
:
.
ALL VALUES IN THE FOLLOWING FIGURES ARE ONLY LISTED AS AN EXAMPLE  
During set-up and load memory remember that the instructions of the manual related to key operation have the following  
meaning:  
<A> + <B>  
Press the <A> key and keeping the pressure on the key, press then the <B> key.  
<A> , <B>  
Press in sequence, first the <A> key and then the <B> key.  
To power the instrument press the <ON> key; the indication :  
... CL526...  
will appear for a few seconds.  
The instrument runs an autodiagnostic routine for the self-checking of critical circuits and components.  
A positive check will be shown with the indication  
Test OK Ver 7.001  
for about one second.  
The number on the right side of the display indicates the version of the memory installed on the instrument.  
The instrument is ready for measurement (IN mode) with the previously selected operating mode, as indicated below:  
In 1280.6°C TcK:  
Any faulty conditions that may be indicated are described in par. 8.9.  
9.2  
Battery voltage indication  
To recall the battery voltage on the display press the <SHIFT> + <BATTERY> keys. The indication will be as  
follows:  
BAT 5.2 V IIII  
The horizontal bar indicates the level of charge of the battery (each bar is equivalent to 25% of the full capacity)  
The “low” limit of the battery voltage, for the correct operation of the instrument, is +4.6V.  
Press any key to reset the operative mode.  
During normal operating modes (measure or simulation), “low battery” condition will be shown as follows:  
Out 1248.3°C  
TcK:  
The battery symbol indicates that the battery has enough energy for about 30 minutes operation.  
A black symbol means that battery charge is below minimum: batteries must be recharged.  
9.3  
Operating mode set up  
To select the required operating mode follow the procedures indicated below.  
24  
 
9.3.1  
IN - OUT mode selection  
Press the <ON> key to power the instrument.  
After diagnostic routine, the calibrator will be forced into the “IN” function with the active parameter previously  
selected (i.e. with the indication of a measured value of +1032 °C with thermocouple type “K”).  
In 1032.2°C TcK:  
Open input terminals will cause a fluctuation of the reading up to “Underflow “ or “Overflow“ conditions.  
To select the simulation mode press the <IN-OUT> key (the indication will be for example, relative to a simulated  
value of 0 °C for a thermocouple type “K”).  
Out  
0.0°C TcK:  
The output value can be programmed using the two membrane slidewires (<L> and <L> keys).  
Keep the key pressed to cause a continuous variation of the simulated value; the speed of variation will change by  
moving the pressure to the extremity of the keys.  
By touching a point, near the two central zones, the value will increase or decrease by one single digit.  
Press simultaneously <L> and <L> cursor slidewires to set the simulated value to zero.  
9.3.2  
Parameter or sensor selection  
To select the electrical parameter or the sensor required by the application, in any measuring or simulation mode, follow  
the procedure indicated below.  
Switch the instrument -ON-  
Press the <SELECT> key : the display will show one of the following menu pages:  
Tc J K T U L N E  
Tc R S B C F G D  
Pt100 IEC JIS US  
ni100 ni120 Ohm  
mV V mA Xscaling  
Press <L> or <L> cursor slidewire to select the appropriate page.  
Select the required parameter or sensor, by moving left or right the flashing cursor with keys <!> or <"> (eg. to  
activate the thermocouple type T choose the page and cursor position as indicated below).  
Tc J K T U L N E  
Press the <ENTER> key to memory load the selection; the instrument will return to the previous operative mode with  
the new selected electrical signal or sensor.  
By pressing the <SELECT> key, instead of <ENTER>, the instrument will not acknowledge any variation and return  
to the previous parameter or sensor.  
25  
 
9.3.3  
Tecnical unit  
To change the technical unit from °C to °F (or viceversa) follow the procedure indicated below:  
Instrument operative in -Out- mode as follows:  
Out  
0.0°C TcK:  
Switch the instrument -OFF-  
Keep pressed the <SELECT> key and switch the instrument <ON> obtaining the following reading:  
In  
10.0°F TcK:  
Use the same procedure to return in °C switching the instrument -Off-  
Press the <SELECT> + <ON> key to read:  
In  
-12.0°C TcK:  
9.3.4  
Decimal point position  
The decimal point position, to increase or decrease the resolution upon the application, is made by pressing keys <!> or  
<">.  
The instrument will automatically convert values in °C or °F from decimal to integer (and viceversa) when they are in the  
range limits stated in par. 1.2.1.  
On mV or V mode one of the following decimal point positions can be obtained:  
0.000  
0.0  
0.00  
0.000  
V
mV  
mV  
mV  
Decimal conversion is not possible for the mA mode (always with three decimal points).  
9.3.5  
International Temperature Scale  
The memory of the instrument stores both linearisations of the old International Practical Temperature Scale of 1968  
(IPTS68) and the new International Temperature Scale of 1990 (ITS90).  
The active linearisation is indicated on the right side of the display as follows:  
L
L
IPTS 68  
IPTS 90  
The change from one scale to the other is possible directly from the keyboard:  
Press <SHIFT> + <ITS> keys  
9.3.6  
Rj mode  
The instrument can operate with an internal automatic cold junction (Rj) compensation or a remote programmable from -  
50 to 100°C.  
The active Rj compensation mode is indicated on the right side of the display as follows:  
L
L
internal automatic  
external programmable  
To change the reference junction (Rj) compensation mode, press <SHIFT> + <Rj> keys.  
9.3.7  
Convert function  
The "convert" function allows readings of the electrical signal equivalent to the technical unit indication. Can be used in  
both -IN- or -OUT- mode for thermocouples, resistance thermometers and x scaling.  
26  
 
To “convert” the type of indication, with the instrument operative in any of the above indicated modes, press <SHIFT>  
+ <CONVERT> keys obtaining for example the following indications:  
Out 100.0 °C TcK  
Press <SHIFT> + <CONVERT> keys to obtain the equivalent mV indication:  
Cvt 3.185  
In 100.0 °C Pt  
Press <SHIFT> + <CONVERT> keys to obtain:  
Cvt 138.0  
To return in technical unit indication press the <ENTER> key.  
9.3.8  
Average readings  
The use of the “Average” function is advised with unstable input signals.  
The average represents a progressive integration of the input signal.  
To enable the “Average” mode press keys <SHIFT> + <AVERAGE>: the display will show:  
Avg 128.6°C TcK :  
To disable the “ Average “ function press again <SHIFT> + <AVERAGE> keys.  
9.3.9  
IN-OUT data memories  
The availability of 60 slots of memory represents an important feature both either in simulation and/or in measurement  
modes.  
In the measurement mode it can be useful to store a number of input values pertinent to special test conditions.  
In the simulation mode, the permanent availability of 60 calibration values can be useful, eg. during the calibration of the  
scale of different recorders.  
9.3.9.1  
Data memory configuration  
To store each memory slot press keys:  
<SHIFT> + <0>  
<SHIFT> + <1>  
<SHIFT> + <2>  
The following data is stored:  
operative mode  
measured or simulated value:  
decimal point position (eg. 0.1°C or 1°C)  
°C or °F technical unit  
internal or external Rj mode  
type of sensor or selected parameters: (eg thermocouple type)  
International Temperature Scale (IPTS68 or ITS90)  
60 memory slots are available.  
Memory slots are split in 20 groups each of three memories for a total of 60 memories.  
Each group is identified by a letter:  
group A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T.  
27  
 
To select the required group follow the procedure indicated below:  
Press the <SELECT> key to obtain one of the menu pages  
Press the <0> key to obtain the following indication:  
Sel STO Group: A  
Press the <L> or <L> key to select the required group number  
Press the <0> key to confirm the selection and to return to the previously selected operative mode.  
9.3.9.2  
Data memory manual recall  
To recall data memory values, select first the appropriate or required group number and press then the <0>, <1>, or <2>  
key.  
9.3.9.3  
Data memory automatic scanning  
The 60 stored items of data can be assigned, besides the group number, to a pre-programmed sequence.  
The programmed sequence (a number of calibration points, or a number of data items to be supervised), includes a  
linear sequence of memory starting from a "start" point and ending with a "end" point".  
Memory for seven different pre-programmed sequences are available and the procedure is indicated below.  
The numerical value and the parameter indicated below are an operative example eg. to memory load 5 calibration  
points of a scale of a potentiometric recorder (temperature with a thermocouple type K).  
1 = -50°C  
2 = 0°C  
3 = +100°C  
4 = +200°C  
5 = +500°C  
As described in par. 8.6.9.1 memory store the calibration data as follows:  
point 1 =  
point 2 =  
point 3 =  
point 4 =  
point 5 =  
memory 0 - group A  
memory 1 - group A  
memory 2 - group A  
memory 0 - group B  
memory 1 - group B  
The simulation program set-up procedure is now required.  
Press the <SELECT> key to obtain one of the menu pages  
Press the <1> key to obtain the following indication:  
SEL Program # 1  
Press the <L> an d <L> keys to enter the program number required (1 to 7)  
Press the <1> key to confirm the selection of the program number and to return to the indication of one of the menu  
pages  
Press the <2> key to obtain the following indication:  
Prog #1 from A1  
Press the <L> an d <L> keys to select the "start" group/memory (eg. A1)  
Press the <2> key to confirm the "start" point obtaining the following indication:  
Prog #1  
to A2  
Press <s> and <t> keys to select the "end" group/memory (eg. A2)  
28  
 
Press the <2> key to confirm the selection and to return to the menu page  
Press the <AUTORAMP> key to obtain one of the following indications:  
Sel : Program  
Select with <L> and <L> keys the required "Sel:program" page  
Press the <AUTORAMP> key to confirm the selection and to return to the menu page  
Press the <SELECT> key to memory load the program and to return to the operative mode  
9.3.9.4  
Manual step advance  
To run the program with manual step advance, press the <AUTORAMP> key obtaining the following indication (as per  
example indicated at par. 8.6.9.3)  
.A0  
-50 TcK :  
The symbol on the left of the display has the following meaning:  
O
I
=
=
output  
input  
Press the <AUTORAMP> key to advance one step of the program. After the "end" point (n.5 in the example - B1) the  
manual sequence will start again from the point 1.  
To go back to the previous step press <ENTER> + <AUTORAMP> keys  
Press the <L> or <L> or <SELECT> or <!> or <"> key to exit the program  
9.3.10  
Automatic simulation cycle  
The instrument can be programmed for simulating two types of pre-programmed continuous or step ramp output.  
By programming the incremental steps to its minimum value (0.1 or 1 degree resolution) the step ramp can be  
assimilated to a continuous ramp.  
Select first the technical unit (°C or °F), the type of thermocouple and then follow the procedure indicated below.  
The procedure will consider a simulation in mV.  
9.3.10.1 Simulation cycle selection  
Two different automatic simulations identified as "Autoramp1" and "Autoramp 2" can be memory stored.  
To select the required program press the <SELECT> key to obtain one of the menu pages.  
Press the <AUTORAMP> key to obtain one of the following indications:  
Sel : Autoramp 1  
Sel : Autoramp 2  
Press the <L> and <L> key to select the required Autoramp program  
Press the <AUTORAMP> key to confirm the selection and to return to the menu page indication  
Press the <SELECT> key to return to the operative mode  
The automatic ramp cycle has the following behaviour  
29  
 
End  
Z step  
Start  
Time  
Soak  
TimSoak  
To memory load the cycle parameters, follow the procedure indicated below  
Select the required tecnical unit or electrical parameters  
Select the required decimal point position  
Press <SHIFT> + <TIME> keys to enter the cycle set-up procedure obtaining the following indication  
Time 0h 0m 50s  
related to the "time" in hours, minutes and seconds. The maximum setting is limited to 5 hours 33 minutes 20 seconds  
(20.000 seconds)  
Press the <START> key to obtain the following indication:  
Start  
0.0mV  
Press the <L> and <L> cursors to set the "Start" level of the cycle  
Press <ENTER>+<START> keys to memory store the new value  
Press the <END> key to obtain the following indication:  
End  
100.0mV  
Press <L> and <L> cursors to set the "end" level of the cycle  
Press <ENTER>+<END> keys to memory store the new value  
Press the <STEP> key to obtain the following indication:  
Step  
1.0mV  
Press <L> and <L> cursors to set the size of each individual step. To have a continuous ramp set the minimum  
possible value (e.g. = 0.1)  
Press <ENTER>+<STEP> keys to memory store the new value  
Press the <TIME> key to obtain the following indication:  
Time 0h 0m 50s  
Press <L> and <L> cursors to set the required ramp time - max. 5h-33m-20s (20000 seconds)  
Press <ENTER>+<TIME> keys to memory store the new value  
A setting of 0h-0m-00s allows a manual step advance each time the <AUTORAMP> key is pressed.  
Press the <SOAK> key to read the following indication:  
Soak 0h 0m 50s  
Press <L> and <L> cursors to set the waiting time (or soak time). If the setting is 0h-0m-0s the waiting or soak time  
is excluded  
30  
 
Press <ENTER>+<SOAK> keys to memory store the new value  
Press the <MODE> key to obtain one of the following indications:  
Mode 1  
Mode 1  
Mode 1  
Mode +  
^ ramp  
^ ramp  
1 ramp  
1 ramp  
single cycle program  
repeated cycling program  
single cycle program  
repeated rise ramp program.  
Press the <L> or <L> key to select the required program type.  
Press <ENTER> + <MODE> keys to memory store the new selection.  
Press the <!> or <"> key to exit the set-up procedure.  
9.3.10.2 Simulation cycle  
Press the <SELECT> key to obtain one of the menu pages.  
Press the <AUTORAMP> key to obtain one of the two following indications:  
Sel : Autoramp 1  
Sel : Autoramp 2  
Press <L> or <L> key to select the required program.  
Press the <AUTORAMP> to memory store the selection and to return to the menu page.  
Press the <SELECT> key to return to the normal operative mode.  
To run the automatic simulation cycle press the <AUTORAMP> key  
The display indicates the actual cycle position as shown below:  
Prg  
18.0mV  
On the repeated cycling to stop the program press <SHIFT> + <AUTORAMP> keys.  
9.3.11  
Rj compensation mode check  
The internal/external reference junction compensation is only enabled for temperature measurement or simulation with  
thermocouples.  
During both simulation or measuring mode to check the type of reference junction mode previously installed press the  
<SELECT> key to enter the type of sensor or parameter selection menu page.  
Press the <IN/OUT> key to obtain the following indication:  
RJ :  
22.8°C int  
The above reading indicates that the instrument is preset with an internal automatic reference junction compensation.  
The temperature indication is the value measured by the precision thin film resistance thermometer placed inside the  
In/Out terminal. If, instead of the code "int" the indication  
31  
 
RJ :  
0.0°C ext  
is displayed, it means that an external reference junction compensation has been selected for a temperature of 0.0°C  
(programmable from -50°C to +100°C).  
The reference junction compensation mode can be reprogrammed as indicated in par. 8.5.6. The external reference  
junction compensation value can be programmed as indicated in par. 8.5.13.2.  
9.3.12  
Scale factor program  
The “scale factor” mode is a method to read or to simulate electrical signals values in terms of engineering units.  
The example explains the procedure of installing the “scale factor” function for the calibration of a potentiometric recorder  
with a scale from 0.0 mbar to 400.0 mbar corresponding to the required electrical linear input signal.  
Press <SHIFT> + <PROGRAM X> keys to enter the "Scale Factor" set-up procedure. The display will indicate the low  
end of the scale eg. in mbar.  
LO:  
0.0 Prog  
Press one of the <!> or <"> keys if a decimal point shift is required.  
Press the <L> or <L> keys to adjust to the required value.  
Press the <ENTER> key to load in the memory the value and to advance the program one step: the display will  
indicate the full scale value of the technical unit (eg. mbar).  
HI:  
400.0 Prog  
Press the <L> or <L> keys to adjust the full scale value.  
Press the <ENTER> key to load in the memory the value: the display will indicate one of the menu pages as follows:  
Type : 0-1000 mV  
Type : 0-100 mV  
Type : 0-10 V  
Type :  
1-5 V  
Type : 0-400  
Type : 4-20 mA  
Type : 0-20 mA  
Select, through <L> or <L> keys, the required page and  
press the <ENTER> key to memory load the needed parameter. The display will indicate one of the two following  
pages:  
Mode :  
Mode :  
Linear  
Square  
32  
 
Press the <L> or <L> key to select the required page.  
Press the <ENTER> key to memory load the selection.  
The program will advance to the next step with the indication :  
WORD:  
!
or from a previous set-up eg.  
WORD:  
mbar  
This procedure allows the setting of four alphanumeric characters as a symbol of the measured or simulated parameter.  
Library of ch aract ers  
.
.
....  
.
7 8 O P g  
.
.
.
.
.
....  
! 6 9 N Q f i  
" 5 : M R e j  
# 4 ; L S d K  
$ 3 < k T c l  
% 2 = J U b m  
& 1 > I V a n  
' 0 ? H W \ o  
( / @ G X _ P  
) . A F Y ^ q  
* - B E Z ] r  
. .  
.. ..  
..  
.
.
.
.. ..  
.
+ , C D [  
s
By pressing keys <!> or <"> the needed character, identified by being underlined, will be activated.  
Press <L> or <L> keys to scroll the internal library of characters and symbols and select the pertinent one. (i.e. by  
a proper setting you can obtain words as indicated below)  
WORD:  
WORD:  
WORD:  
% RH  
psi  
hPa  
If the application does not require a dedicated symbol, but the display of the electrical parameter (i.e. mV, mA, ), recall  
on the display the four blank spaces.  
WORD:  
_ _ _ _  
With a random display indication remember that the four blank spaces will be settable, through single digit setting, by  
pressing the <L> key on its higher side, for a few seconds.  
Press the <ENTER> key to load in the memory the symbol.  
The “scale factor” mode will be activated as follows:  
Press the <SELECT> key to obtain one of the menu pages.  
Move the flashing cursor to the “X scaling” position  
33  
 
Press the <ENTER> key to memory load the selection  
The display will indicate the scaled input/output value.  
Out  
105.8 mbar  
9.3.13  
Installation parameter procedure  
To enter this procedure press the <ENTER> + <ON> keys  
The display will indicate as shown below (the indicated numerical value is only an example).  
CAL? 65388 N=0  
To exit from the procedure, in any of the following steps switch the instrument -Off-.  
9.3.13.1 Firmware version code - Serial number  
From the above step of the procedure it is possible to view the software version code .  
Press the <IN/OUT> key to obtain the following indication:  
Ver2.000 # 65535  
.
The reading on the display indicates that the instrument is equipped with a memory release code 2.000.  
The above information is extremely useful to understand the update status of the instrument and to simplify information  
exchange with OMEGA engineers during repair or service operations.  
The second number on the right side of the display is the Serial Number of the instrument.  
Press any key to exit the procedure with the following indication:  
CAL? 65388 N=0  
Switch the instrument -OFF- to end the procedure.  
9.3.13.2 External Rj compensation  
To enter the External Rj compensation set-up start with the instrument switched -Off- and press <ENTER> + <ON> keys  
to obtain the following indication:  
CAL? 65388 N=0  
Press the <AUTORAMP> key to obtain:  
RJ :  
0.0°C ext  
Set, with <L> and <L> keys, the temperature of the external Rj compensation (adjustable from -50°C to +100°C).  
Press the <AUTORAMP> key to memory load the new temperature value of reference junction compensation.  
To end this procedure switch the instrument -Off-  
34  
 
10  
DIGITAL INTERFACE  
The CL526 portable calibrator is equipped with a digital interface. The interface circuit is essentially based on the serial  
communication interface subsystem (SCI) on the chip of the microprocessor. The output voltage levels are TTL at 0 to +5  
V.  
An optional adaptor to convert the voltage level from 0 to +5V to RS232 levels can be supplied on request. This adaptor  
is required to interface the CL526 with a Personal Computer.  
10.1  
Digital interface data program mode  
To enter the procedure, press the <ENTER> + <ON> keys. The display will indicate:  
CAL? 65388 N=0  
To enter the program mode press the <2> key;  
Baud Rate 19200  
The numerical value of the “baud rate” can be one of the following : 19200, 9600, 4800, 2400, 1200, 600, 300  
Select, with the <L> or <L> key the “baud rate” used by the receiver unit and transmission lines.  
Press the <2> key to memory load the baud rate.  
The display will indicate:  
ID-Name :  
1
The number represents the address code assigned to the instrument.  
Press the <L> or <L> key to select a number from 00 to 99.  
Press the <2> key to memory load the programmed value.  
The display will return to the original indication:  
CAL? 65388 N=0  
To exit the procedure press the <OFF> key.  
10.2  
Digital output wiring practice  
The wiring to the digital output signals is made through a mini DIN connector mounted on the lower end of the case.  
The pertinent connections are indicated below.  
Rx  
Tx  
ground  
ground  
5 V  
Female miniDIN connector  
(case mounted - external view)  
For easy interconnections a miniDIN connector with cable (cat. EE420123) con be supplied on request. The conductors  
color codes can change with different supplier; please check before using.  
35  
 
6 5 4  
8
3
7
1 2  
Front view  
LINDY  
brown  
red  
green  
gray  
purple  
blue  
orange  
yellow  
CINCH  
black  
green  
blue  
pin 1 :  
pin 2 :  
pin 3 :  
pin 4 :  
pin 5 :  
pin 6 :  
pin 7 :  
pin 8 :  
gray  
yellow  
white  
red  
brown  
10.3  
TTL to RS 232 adapter  
The cat. BB530001 TTL to RS232 adaptor consists of a cable to which are connected a male mini DIN connector (for the  
CL526) and a DB 25 connector, that contains the electrical circuitry (for the PC).  
The basic circuit and connections are as follows:  
TTL to RS 232 converter  
+ 5 V  
10 µF, 16 V  
+
10 µF, 16 V  
IBM - PC  
10 µF, 16 V  
+
CL526  
6
2
16 10  
D
B
2
Tx  
11  
12  
14  
13  
5
Tx  
Rx  
Rx  
Rx IBM  
Tx IBM  
3
2
7
Ground  
IBM  
ICL 232  
TSC 232  
1
3
+ 5 V  
+
10 µF, 16 V  
10 µF, 16 V  
Mini-Din  
4
5
+
15  
8
10.4  
Communication protocol from CL526 to a PC  
The exchange of information when a CL526 is interconnected with a PC are as follows:  
COMPUTER REQUEST  
Computer  
CL526  
Tx IDNAME  
Rx IDNAME  
_
ß
Rx IDNAME  
Tx IDNAME  
Proceed if name acknoledged  
If not, do not answer  
Tx Instruction  
Rx Instruction  
_
ß
Rx Instruction  
Tx Instruction  
Tx char  
Rx DATA 1  
_
ß
Rx char  
Tx DATA 1  
Tx char  
Rx DATA 2  
_
ß
Rx char  
Tx DATA 2  
36  
 
Tx char  
Rx DATA 3  
_
ß
Rx char  
Tx DATA 3  
Tx char  
Rx DATA 4  
_
ß
Rx char  
Tx DATA 4  
Tx char  
Rx CHKSUM  
_
ß
Rx char  
Tx CHKSUM  
IDNAME, Instruction, DATA 1, DATA 2, DATA 3, DATA 4 and CHKSUM are 8-bit values (1 byte)  
Notes  
Instruct DATA 1  
DATA 2  
DATA 3  
DATA 4  
Actual value  
24 display(actual) lin(actual)  
Val Hi(actual)  
Val Lo(actual)  
STO 0 Group A 164  
STO 0 Group A 165  
STO 1 Group A 165  
STO 1 Group A 166  
STO 2 Group A 166  
STO 2 Group A 167  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group B 168  
STO 0 Group B 169  
STO 1 Group B 169  
STO 1 Group B 170  
STO 2 Group B 170  
STO 2 Group B 171  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group C 172  
STO 0 Group C 173  
STO 1 Group C 173  
STO 1 Group C 174  
STO 2 Group C 174  
STO 2 Group C 175  
x
x
Display (0)  
x
Display( 1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group D 176  
STO 0 Group D 177  
STO 1 Group D 177  
STO 1 Group D 178  
STO 2 Group D 178  
STO 2 Group D 179  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group E 180  
STO 0 Group E 181  
STO 1 Group E 181  
STO 1 Group E 182  
STO 2 Group E 182  
STO 2 Group E 183  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group F 184  
STO 0 Group F 185  
STO 1 Group F 185  
STO 1 Group F 186  
STO 2 Group F 186  
STO 2 Group F 187  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group G 188  
STO 0 Group G 189  
STO 1 Group G 189  
STO 1 Group G 190  
STO 2 Group G 190  
STO 2 Group G 191  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group H 192  
STO 0 Group H 193  
STO 1 Group H 193  
STO 1 Group H 194  
x
x
Display (0)  
x
Display (1)  
x
Lin (0)  
x
Lin (1)  
x
Value Hi (0)  
x
Value Hi (1)  
Value Lo (0)  
x
Value Lo (1)  
37  
 
STO 2 Group H 194  
STO 2 Group H 195  
x
x
Display (2)  
x
Lin (2)  
x
Value Hi (2)  
Value Lo (2)  
STO 0 Group I 196  
STO 0 Group I 197  
STO 1 Group I 197  
STO 1 Group I 198  
STO 2 Group I 198  
STO 2 Group I 199  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group J 200  
STO 0 Group J 201  
STO 1 Group J 201  
STO 1 Group J 202  
STO 2 Group J 202  
STO 2 Group J 203  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group K 204  
STO 0 Group K 205  
STO 1 Group K 205  
STO 1 Group K 206  
STO 2 Group K 206  
STO 2 Group K 207  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group L 208  
STO 0 Group L 209  
STO 1 Group L 209  
STO 1 Group L 210  
STO 2 Group L 210  
STO 2 Group L 211  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group M 212  
STO 0 Group M 213  
STO 1 Group M 213  
STO 1 Group M 214  
STO 2 Group M 214  
STO 2 Group M 215  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group N 216  
STO 0 Group N 217  
STO 1 Group N 217  
STO 1 Group N 218  
STO 2 Group N 21£  
STO 2 Group N 219  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group O 220  
STO 0 Group O 221  
STO 1 Group O 221  
STO 1 Group O 222  
STO 2 Group O 222  
STO 2 Group O 223  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group P 224  
STO 0 Group P 225  
STO 1 Group P 225  
STO 1 Group P 226  
STO 2 Group P 226  
STO 2 Group P 227  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group Q 228  
STO 0 Group Q 229  
STO 1 Group Q 229  
STO 1 Group Q 230  
STO 2 Group Q 230  
STO 2 Group Q 231  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group R 232  
STO 0 Group R 233  
STO 1 Group R 233  
STO 1 Group R 234  
x
x
Display (0)  
x
Display (1)  
x
Lin (0)  
x
Lin (1)  
x
Value Hi (0)  
x
Value Hi (1)  
Value Lo (0)  
x
Value Lo (1)  
38  
 
STO 2 Group R 234  
STO 2 Group R 235  
x
x
Display (2)  
x
Lin (2)  
x
Value Hi (2)  
Value Lo (2)  
STO 0 Group S 236  
STO 0 Group S 237  
STO 1 Group S 237  
STO 1 Group S 238  
STO 2 Group S 238  
STO 2 Group S 239  
x
x
Display (0)  
x
Display (1)  
x
Display (2)  
x
Lin (0)  
x
Lin (1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
STO 0 Group T 240  
STO 0 Group T 241  
STO 1 Group T 241  
STO 1 Group T 242  
STO 2 Group T 242  
STO 2 Group T 243  
x
x
Display (0)  
x
Display(1)  
x
Display (2)  
x
Lin (0)  
x
Lin(1)  
x
Lin (2)  
x
Value Hi (0)  
x
Value Hi (1)  
x
Value Hi (2)  
Value Lo (0)  
x
Value Lo (1)  
x
Value Lo (2)  
RAMP 1  
RAMP 1  
RAMP 1  
RAMP 1  
128  
129  
130  
131  
x
x
Time Hi (1)  
Stop Hi (1)  
Lin (1)  
Time Lo (1)  
Stop Lo (1)  
Display (1)  
Mode (1)  
Start Hi (1)  
Step Hi (1)  
Soak Hi (1)  
Start Lo (1)  
Step Lo (1)  
Soak Lo (1)  
x
RAMP 2  
RAMP 2  
RAMP 2  
RAMP 2  
132  
133  
134  
135  
x
x
Time Hi (2)  
Stop Hi (2)  
Lin (2)  
Time Lo (2)  
Stop Lo (2)  
Display (2)  
Mode (2)  
Start Hi (2)  
Step Hi (2)  
Soak Hi (2)  
Start Lo (2)  
Step Lo (2)  
Soak Lo (2)  
x
X SCALING  
X SCALING  
X SCALING  
X SCALING  
136  
137  
138  
139  
x
x
LOX Hi  
Decimal point  
CHAR 2  
x
LOX Lo  
Type X  
CHAR 3  
x
HiX Hi  
Mode X  
CHAR 4  
HiX Lo  
CHAR 1  
x
VARIE  
VARIE  
VARIE  
141  
248  
32  
x
x
STO group  
x
x
x
x
Program  
x
Ramp  
x
Vbat  
PROGRAM  
PROGRAM  
PROGRAM  
PROGRAM  
244  
245  
246  
247  
x
x
From (Prog 1) to (Prog 1)  
From (Prog 3) to (Prog 3)  
From (Prog 5) to (Prog 5)  
From (Prog 7) to (Prog 7)  
From (Prog 2) to (Prog 2)  
From (Prog 4) to (Prog 4)  
From (Prog 6) to (Prog 6)  
display (name).AND.10hex=  
display (name).AND.8 =  
0
= Rj int  
= Rj ext  
10hex  
0
8
= ITS68  
= ITS90  
display (name).AND.07hex =  
0
1
2
3
4
= 1.9999  
= 19.999  
= 199.99  
= 1999.9  
= 19999  
display (name.AND.40hex =  
display (name).AND.20hex =  
lin (name)  
0
= °C  
= °F  
40hex  
0
= IN  
= OUT  
20hex  
0
= Tc J  
1
2
3
4
= Tc K  
= Tc T  
= Tc U  
= Tc L  
5
6
7
8
= Tc N  
= Tc E  
= Tc R  
= Tc S  
= Tc B  
= Tc C  
= Tc F  
= Tc G  
= Tc D  
= Pt100 (.385)  
9
10  
11  
12  
13  
14  
15  
16  
17  
= Pt100 (.3916 JIS)  
= Pt100 (.3910 OIML)  
= Ni100  
39  
 
18  
19  
20  
21  
22  
23  
24  
25  
= Ni120  
= OHM  
= 22 mV  
= 100 mV  
= 1000 mV  
= 10 V  
= 20 mA  
= X scaling  
Lin (name).AND.80hex =  
0
= value OK  
= error  
80hex  
if line (name).AND.80hex = 80hex  
corresponding "Value Lo"  
0
1
2
3
4
6
= under  
= over  
= error 7  
= error 2  
= error 6  
= error 0  
if line (name).AND.80hex = 0  
value (name) = 2nd complement (16 bit) Value Hi (name).256 + Value Lo (name)  
Mode =  
0
1
2
3
= one ramp dual slope  
= multi ramp dual slope  
= one step one slope  
= multi ramp one slope  
Type X  
0
1
3
4
5
6
= 0 - 100 mV  
= 0 - 1000 mV  
= 4 - 20 mA  
= 0 - 400 _  
= 1 - 5 V  
= 0 - 10 V  
Mode X  
0
1
= linear  
= square  
STO Group selected  
0
= A  
1
= B  
2
= C  
...  
= ...  
n (max. 19)  
= n (max. T)  
Program  
0
1
...  
= Program 1  
= Program 2  
= ...  
n (max. 7)  
= n (max. Program 7)  
Ramp  
0
1
2
= Autoramp 1  
= Autoramp 2  
= Program  
From........To........  
0
1
2
3
= STO 0 Group A  
= STO 1 Group A  
= STO 2 Group A  
= STO 0 Group B  
= ...  
...  
n (max. 59)  
= STO n Group n (max. STO 2 Group T)  
Volt Vbat  
= (Vbat x 2) / 51  
CHKSUM ( checksum ) = DATA1 + DATA2 + DATA3 + DATA4).AND. FF  
The above is useful to verify the integrity of transmitted and received data  
The minimum time-out of the CL526 is 5 seconds.  
10.5  
Computer request for CL526 settings  
Computer  
CL526  
Tx IDNAME  
Rx IDNAME  
_
ß
Rx IDNAME  
Tx IDNAME  
Proceed if name acknoledged  
If not, do not answer  
Tx Instruction  
Rx Instruction  
_
ß
Rx Instruction  
Tx Instruction  
Tx DATA 1  
Rx char  
_
ß
Rx DATA 1  
Tx char  
Tx DATA 2  
Rx char  
_
ß
Rx DATA 2  
Tx char  
40  
 
Tx DATA 3  
Rx char  
_
ß
Rx DATA 3  
Tx char  
Tx DATA 4  
Rx char  
_
ß
Rx DATA 4  
Tx char  
Tx CHKSUM  
Rx char  
_
ß
Rx CHKSUM  
Tx char  
The CL526 receives and verifies CHKSUM; when not valid, it does not accept the transmitted data  
Each PC instruction for operative mode request must be followed by the CHECSUM recalculation Instruction 47 (with the  
pertinent A and B values) as per the table below  
Notes  
Set In  
Set display  
Set value  
Start ramp  
Start ramp  
Instr  
25  
26  
27  
28  
DATA 1  
Lin (actual)  
Display (actual)  
Value Hi (Out)  
x
x
DATA 2  
x
x
Value Lo (Out)  
x
x
DATA 3  
DATA 4  
A
B
x
x
x
x
x
x
x
x
x
x
---------  
---------  
---------  
---------  
---------  
33  
TIME RAMP 1  
START RAMP 1 127  
127  
0
0
0
0
0
0
0
2
4
6
8
10  
12  
14  
Time Hi  
Start Hi  
Stop Hi  
Step Hi  
Lin  
Time Lo  
Start Lo  
Stop Lo  
Step Lo  
Display  
Soak Lo  
Mode  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
STOP RAMP 1  
STEP RAMP 1  
Lin/Dis RAMP 1  
SOAK RAMP 1  
MODE RAMP 1  
127  
127  
127  
127  
127  
Soak Hi  
0
TIME RAMP 2  
START RAMP 2 127  
127  
0
0
0
0
0
0
0
18  
20  
22  
24  
26  
28  
30  
Time Hi  
Start Hi  
Stop Hi  
Step Hi  
Lin  
Time Lo  
Start Lo  
Stop Lo  
Step Lo  
Display  
Soak Lo  
Mode  
0
0
0
0
0
0
0
16  
16  
16  
16  
16  
16  
16  
STOP RAMP 2  
STEP RAMP 2  
Lin/Dis RAMP 2  
SOAK RAMP 2  
MODE RAMP 2  
127  
127  
127  
127  
127  
Soak Hi  
0
LoX  
HiX  
DP/TYPE  
MODE/Char 1  
Char 1/Char 2  
Char 3/Char 4  
127  
127  
127  
127  
127  
127  
0
0
0
0
0
0
34  
36  
38  
40  
41  
43  
LoX Hi  
HiX Lo  
DP  
MODE  
Char 1  
Char 3  
LoX Hi  
HiX Lo  
TYPE  
Char 1  
Char 2  
Char 4  
0
0
0
0
0
0
32  
32  
32  
32  
32  
32  
Dis/Lin STO 0 #A 127  
Value STO 0 #A 127  
Dis/Lin STO1 #A 127  
Value STO 1 #A 127  
Dis/Lin STO 2 #A 127  
Value STO 2 #A 127  
0
0
0
0
0
0
146  
148  
150  
152  
154  
156  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
0
0
0
0
0
0
144  
144  
144  
144  
144  
144  
Dis/Lin STO 0 #B 127  
Value STO 0 #B 127  
Dis/Lin STO1 #B 127  
Value STO 1 #B 127  
Dis/Lin STO 2 #B 127  
Value STO 2 #B 127  
0
0
0
0
0
0
162  
164  
166  
168  
170  
172  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
0
0
0
0
0
0
160  
160  
160  
160  
160  
160  
Dis/Lin STO 0 #C 127  
Value STO 0 #C 127  
Dis/Lin STO 1 #C 127  
Value STO 1 #C 127  
Dis/Lin STO 2 #C 127  
Value STO 2 #C 127  
0
0
0
0
0
0
178  
180  
182  
184  
186  
188  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
0
0
0
0
0
0
176  
176  
176  
176  
176  
176  
Dis/Lin STO 0 #D 127  
Value STO 0 #D 127  
Dis/Lin STO 1 #D 127  
Value STO 1 #D 127  
0
0
0
0
194  
196  
198  
200  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
0
0
0
0
192  
192  
192  
192  
Value Hi (1) Value Lo (1)  
41  
 
Dis/Lin STO 2 #D 127  
Value STO 2 #D 127  
0
0
202  
204  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
0
0
192  
192  
Dis/Lin STO 0 #E 127  
Value STO 0 #E 127  
Dis/Lin STO 1 #E 127  
Value STO 1 #E 127  
Dis/Lin STO 2 #E 127  
Value STO 2 #E 127  
0
0
0
0
0
0
210  
212  
214  
216  
218  
220  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
0
0
0
0
0
0
208  
208  
208  
208  
208  
208  
Dis/Lin STO 0 #F 127  
Value STO 0 #F 127  
Dis/Lin STO 1 #F 127  
Value STO 1 #F 127  
Dis/Lin STO 2 #F 127  
Value STO 2 #F 127  
0
0
0
0
0
0
226  
228  
230  
232  
234  
236  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
0
0
0
0
0
0
224  
224  
224  
224  
224  
224  
Dis/Lin STO 0 ## 127  
Value STO 0 ## 127  
Dis/Lin STO 1 ## 127  
Value STO 1 ## 127  
Dis/Lin STO 2 ## 127  
Value STO 2 ## 127  
0
0
0
0
0
0
242  
244  
246  
248  
250  
252  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
0
0
0
0
0
0
240  
240  
240  
240  
240  
240  
Dis/Lin STO 0 #H 127  
Value STO 0 #H 127  
Dis/Lin STO 1 #H 127  
Value STO 1 #H 127  
Dis/Lin STO 2 #H 127  
Value STO 2 #H 127  
1
1
1
1
1
1
2
4
6
8
10  
12  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
0
0
0
0
0
0
Dis/Lin STO 0 #I 127  
Value STO 0 #I 127  
Dis/Lin STO 1 #I 127  
Value STO 1 #I 127  
Dis/Lin STO 2 #I 127  
Value STO 2 #I 127  
1
1
1
1
1
1
18  
20  
22  
24  
26  
28  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
16  
16  
16  
16  
16  
16  
Dis/Lin STO 0 #J 127  
Value STO 0 #J 127  
Dis/Lin STO 1 #J 127  
Value STO 1 #J 127  
Dis/Lin STO 2 #J 127  
Value STO 2 #J 127  
1
1
1
1
1
1
34  
36  
38  
40  
42  
44  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
32  
32  
32  
32  
32  
32  
Dis/Lin STO 0 #K 127  
Value STO 0 #K 127  
Dis/Lin STO 1 #K 127  
Value STO 1 #K 127  
Dis/Lin STO 2 #K 127  
Value STO 2 #K 127  
1
1
1
1
1
1
50  
52  
54  
56  
58  
60  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
48  
48  
48  
48  
48  
48  
Dis/Lin STO 0 #L 127  
Value STO 0 #L 127  
Dis/Lin STO 1 #L 127  
Value STO 1 #L 127  
Dis/Lin STO 2 #L 127  
Value STO 2 #L 127  
1
1
1
1
1
1
66  
68  
70  
72  
74  
76  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
64  
64  
64  
64  
64  
64  
Dis/Lin STO 0 #M 127  
Value STO 0 #M 127  
Dis/Lin STO 1 #M 127  
Value STO 1 #M 127  
Dis/Lin STO 2 #M 127  
Value STO 2 #M 127  
1
1
1
1
1
1
82  
84  
86  
88  
90  
92  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
80  
80  
80  
80  
80  
80  
Dis/Lin STO 0 #N 127  
Value STO 0 #N 127  
Dis/Lin STO 1 #N 127  
Value STO 1 #N 127  
1
1
1
1
98  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
1
1
1
1
96  
96  
96  
96  
100  
102  
104  
Value Hi (1) Value Lo (1)  
42  
 
Dis/Lin STO 2 #N 127  
Value STO 2 #N 127  
1
1
106  
108  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
96  
96  
Dis/Lin STO 0 #O 127  
Value STO 0 #O 127  
Dis/Lin STO 1 #O 127  
Value STO 1 #O 127  
Dis/Lin STO 2 #O 127  
Value STO 2 #O 127  
1
1
1
1
1
1
114  
116  
118  
120  
122  
124  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
112  
112  
112  
112  
112  
112  
Dis/Lin STO 0 #P 127  
Value STO 0 #P 127  
Dis/Lin STO 1 #P 127  
Value STO 1 #P 127  
Dis/Lin STO 2 #P 127  
Value STO 2 #P 127  
1
1
1
1
1
1
130  
132  
134  
136  
138  
140  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
128  
128  
128  
128  
128  
128  
Dis/Lin STO 0 #Q 127  
Value STO 0 #Q 127  
Dis/Lin STO 1 #Q 127  
Value STO 1 #Q 127  
Dis/Lin STO 2 #Q 127  
Value STO 2 #Q 127  
1
1
1
1
1
1
146  
148  
150  
152  
154  
156  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
144  
144  
144  
144  
144  
144  
Dis/Lin STO 0 #R 127  
Value STO 0 #R 127  
Dis/Lin STO 1 #R 127  
Value STO 1 #R 127  
Dis/Lin STO 2 #R 127  
Value STO 2 #R 127  
1
1
1
1
1
1
162  
164  
166  
168  
170  
172  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
160  
160  
160  
160  
160  
160  
Dis/Lin STO 0 #S 127  
Value STO 0 #S 127  
Dis/Lin STO 1 #S 127  
Value STO 1 #S 127  
Dis/Lin STO 2 #S 127  
Value STO 2 #S 127  
1
1
1
1
1
1
178  
180  
182  
184  
186  
188  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
176  
176  
176  
176  
176  
176  
Dis/Lin STO 0 #T 127  
Value STO 0 #T 127  
Dis/Lin STO 1 #T 127  
Value STO 1 #T 127  
Dis/Lin STO 2 #T 127  
Value STO 2 #T 127  
1
1
1
1
1
1
194  
196  
198  
200  
202  
204  
Display (0) Lin  
Value Hi (0) Value Lo (0)  
Dispaly (1) Lin  
Value Hi (1) Value Lo (1)  
Display (2) Lin  
Value Hi (2) Value Lo (2)  
1
1
1
1
1
1
192  
192  
192  
192  
192  
192  
Notes  
Instr DATA 1  
DATA 2  
DATA 3  
DATA 4  
A
B
CHKSUM recalc. 47  
A
B
0
0
-----------  
From/To PROG 1 127  
From/To PROG 2 127  
From/To PROG 3 127  
From/To PROG 4 127  
From/To PROG 5 127  
From/To PROG 6 127  
From/To PROG 7 127  
1
1
1
1
1
1
1
210  
212  
214  
216  
218  
220  
222  
From  
From  
From  
From  
From  
From  
From  
To  
To  
To  
To  
To  
To  
To  
1
1
1
1
1
1
1
208  
208  
208  
208  
208  
208  
208  
PROGRAM  
RAMP  
SELECT GROUP 74  
72  
71  
PROGRAM  
RAMP  
Group  
0
0
0
0
0
0
0
0
0
-----------  
-----------  
-----------  
The computer must split a 16 bit word into 2 words of 8 bit as follows  
Value Hi ( .... )  
Higher 8 bit  
Value Lo ( .... )  
Lower 8 bit  
CHKSUM =  
(DATA1 + DATA2 + DATA 3 + DATA 4) .AND.7F  
43  
 
10.6  
Communication programs  
In this paragraph are illustrated two examples of communication programs between the CL526 and an IBM or IBM  
compatible PC.  
Example A: (data transfer from CL526 to PC)  
Set IDNAME=1 and BAUD RATE=9600 on CL526 (see chapter 8.6). Connect CL526 through adapter BB530001 (TTL-  
RS232 converter), to personal computer communication port COM1.  
Set CL526 in mA measurement (IN). Run the program and you will see on the computer screen the actual reading value  
(once).  
Example B: (PC instructions to CL526)  
Set IDNAME=1 and BAUD RATE=9600 on CL526 (see chapter 8.6). Connect CL526 through adapter BB530001 (TTL-  
RS232 converter), to personal computer communication port COM1.  
Set the CL526 for current OUT mode; run the program and CL526 will be set automatically to 20mA.  
Example A:  
1Ø CHAR = Ø  
2Ø IDNAME = 1  
3Ø INSTRUCTION = 24  
35 OPEN "COM1: 96ØØ, N,8,1,CD,CS,DS,RS" FOR RANDOM AS # 1  
4Ø PRINT #1, CHR$ (IDNAME);:REM TRANSMIT IDNAME TO CL526  
5Ø WHILE LOC (1) = Ø: WEND: REM WAIT RECEIVING IDNAME FROM CL526  
6Ø IDNAME = ASC (INPUT$ (1, 1)): REM READ RECEIVED IDNAME FROM CL526  
7Ø PRINT #1, CHR$ (INSTRUCTION);  
8Ø WHILE LOC (1) = Ø: WEND  
9Ø INSTRUCTION = ASC (INPUT$ (1, 1))  
1ØØ PRINT #1, CHR$ (CHAR);  
11Ø WHILE LOC (1) = Ø: WEND  
12Ø DATA 1 = ASC (INPUT$ (1, 1))  
13Ø PRINT #1, CHR$ (CHAR);  
14Ø WHILE LOC (1) = Ø: WEND  
15Ø DATA 2 = ASC (INPUT$ (1, 1))  
16Ø PRINT #1, CHR$ (CHAR);  
17Ø WHILE LOC (1) = Ø: WEND  
18Ø DATA 3 = ASC (INPUT$ (1, 1))  
19Ø PRINT #1, CHR$ (CHAR);  
2ØØ WHILE LOC (1) = Ø: WEND  
21Ø DATA 4 = ASC (INPUT$ (1, 1))  
22Ø PRINT #1, CHR$ (CHAR);  
231Ø WHILE LOC (1) = Ø: WEND  
24Ø CHKSUM = ASC (INPUT$ (1, 1))  
25Ø IF CHKSUM <> ((DATA1 + DATA2 + DATA3 + DATA4) AND &HFF) THEN PRINT "Error": END  
26Ø VALUE = DATA3 * 256 + DATA4  
27Ø IF VALUE > 32767 THEN VALUE =VALUE - 65536: REM 2'S COMPLEMENT  
28Ø PRINT "VALUE: " ; VALUE / 1ØØ  
29Ø END  
Example B:  
1Ø CHAR = Ø  
2Ø IDNAME = 1  
3Ø INSTRUCTION = 27  
4Ø VALUE = 2ØØØ  
5Ø VALUE$ = HEX$ (VALUE)  
55 WHILE LEN (VALUE$)<4: VALUE$ ="Ø"+VALUE$: WEND  
6Ø IF LEN (VALUE$) > 4 THEN VALUE$ =RIGHT$ (VALUE$,4)  
65 DATA1 = VAL ("&H" + LEFT$ (VALUE$, 2))  
7Ø DATA2 = VAL ("&H" +RIGHT$ (VALUE$, 2))  
75 DATA3 = Ø  
8Ø DATA4 = Ø  
9Ø CHKSUM = (DATA1 + DATA2 + DATA3 + DATA4) AND &H7F  
1ØØ REM MEMORY RELEASE PREVIOUS 4.xx1 (Example 4.ØØØ, 4.2ØØ) MUST USE  
11Ø REM NEXT LINE INSTEAD LINE 9Ø OR PROGRAM DOES'NT WORK  
12Ø REM CHKSUM =(DATA1 + DATA2 + DATA3 + DATA4) AND &HFF  
13Ø OPEN "COM1: 96ØØ,N,8,1,CD,CS,DS,RS" FOR RANDOM AS #1  
14Ø PRINT #1, CHR$ (IDNAME) ; : REM TRANSMIT IDNAME TO CL526  
15Ø WHILE LOC (1) = Ø: WEND: REM WAIT RECEIVING IDNAME FROM CL526  
44  
 
16Ø IDNAME = ASC (INPUT$ (1 , 1)): REM READ RECEIVED IDNAME FROM CL526  
17Ø PRINT #1, CHR$ (INSTRUCTION) ;  
18Ø WHILE LOC (1) = Ø : WEND  
19Ø INSTRUCTION = ASC (INPUT$ (1 , 1))  
2ØØ PRINT #1, CHR$ (DATA1) ;  
21Ø WHILE LOC (1) = Ø : WEND  
22Ø CHAR = ASC (INPUT$ (1 , 1))  
23Ø PRINT #1, CHR$ (DATA2) ;  
24Ø WHILE LOC (1) = Ø : WEND  
25Ø CHAR = ASC (INPUT$ (1 , 1))  
26Ø PRINT #1, CHR$ (DATA3) ;  
27Ø WHILE LOC (1) = Ø : WEND  
28Ø CHAR = ASC (INPUT$ (1 , 1))  
29Ø PRINT #1, CHR$ (DATA4) ;  
3ØØ WHILE LOC (1) = Ø : WEND  
31Ø CHAR = ASC (INPUT$ (1 , 1))  
32Ø PRINT #1, CHR$ (CHKSUM) ;  
33Ø WHILE LOC (1) = Ø : WEND  
34Ø CHAR = ASC (INPUT$ (1 , 1))  
35Ø PRINT "Trasmitted."  
39Ø END  
45  
 
11  
MAINTENANCE  
The CL526 portable calibrator has been factory tested and calibrated before shipment.  
The calibration should be verified and re-adjusted if the instrument is showing an error exceeding the declared  
specifications or when a critical active or passive component is replaced (either at component level or at board level).  
OMEGA will supply, on request, a technical reference manual, with all instructions and recommendations for service and  
calibration. OMEGA engineers will give prompt support for any requests of assistance.  
11.1  
Safety recommendations  
Primary elements (i.e. thermocouples, resistance thermometers, etc.) are normally linked to electrical potentials equal or  
near to the ground potential. However, in some applications, there may be present a common mode voltage to earth.  
Check for voltage between input terminals and ground, as this voltage can be transmitted to other devices connected to  
the calibrator.  
11.2  
Faulty operating conditions  
During start up, measuring and simulation modes, faulty conditions of the instrument will be announced, with coded  
messages as follows:  
Indicates a possible loss of data on “AUTORAMP” program or  
on the manual memories.  
Error Checksum 1  
Error Checksum 2  
Error Checksum 3  
Error Checksum 4  
Error Checksum 5  
Error Checksum 6  
Error Checksum 7  
!!! ERROR 9 !!!  
Indicates a possible loss of data on “PROGRAM X”.  
Indicates a possible loss of data on “AUTORAMP”, “PROGRAM  
X” and/or on the manual memories.  
Indicates a possible loss of calibration data.  
Indicates  
a
possible loss of calibration data, and/or  
“AUTORAMP” data and/or on the manual memories  
Indicates a possible loss of calibration data, and/or “PROGRAM  
X”data.  
Indicates  
a
possible loss of calibration data, and/or  
“AUTORAMP” data, “Xscaling” and from the three manual  
memories  
Indicates a data writing on the EEPROM memory not verified.  
When the above error codes are indicated repeat the set-up of the application parameters and/or autoramp data and/or  
In-Out memories.  
Indicates “underflow” conditions  
- UNDER -  
Indicates “overflow” conditions  
+ OVER +  
Indicates an environment temperature (in correspondence with  
<IN/OUT> terminals) exceeding the stated limits  
ERROR 2  
Indicates that the load is exceeding the stated limits.  
When in mA “OUT” function, the external load must not exceed  
1000 .  
46  
 
When in mV or Tc “OUT” function the current flow must not  
exceed 0.5 mA.  
ERROR 6  
ERROR 7  
Indicates a possible error during scale factor computation.  
The above indicated faulty conditions can be announced both during the autodiagnostic routine or in measure or  
simulation modes.  
If the faulty condition is critical for the type of application, it is recommended to re-run the pertinent set up procedure.  
11.3  
Protection fuses  
The CL526 unit, is protected against overvoltage and overcurrent inputs, by thermal fuses. When they activate, you  
should disconnect the electrical connections from the unit and switch the instrument off for about 2 minutes. The thermal  
fuses will be automatically restored and you can resume your work.  
11.4  
Storage  
If the instrument is left unused for a long time, it is recommended to remove the batteries.  
Store the instrument in the original package, at a temperature from -30°C to +60°C, with R.H. less than 90%.  
If the instrument has been unused for a month check the battery voltage, and charge the Ni-MH batteries for at least 12  
hours.  
47  
 
INDEX  
A
K
Automatic simulation cycle; 29  
Average measurements; 10  
Average readings; 27  
Keyboard; 10; 13  
M
MAINTENANCE; 46  
Manual step advance; 29  
Microprocessor; 15  
B
Battery Charger; 23  
Battery charger. Operation from line source; 16  
Battery voltage indication; 24  
O
Operating mode set up; 24  
OPERATION & APPLICATIONS; 24  
C
Case; 11  
Communication programs; 44  
Communication protocol from CL526 to a PC; 36  
Computer request for CL526 settings; 40  
CONTENTS; 4  
P
Parameter or sensor selection; 25  
PHYSICAL DESCRIPTION; 12  
Power ON; 24  
Convert function; 26  
Power supply; 13  
POWER SUPPLY; 23  
PRE-OPERATIONAL CHECK; 19  
Protection fuses; 47  
D
D/A converter; 15  
Data memory automatic scanning; 28  
Data memory configuration; 27  
Data memory manual recall; 28  
Decimal point position; 26  
Digital display; 15  
Digital interface; 10; 16; 35  
Digital interface data program mode; 35  
Digital output wiring practice; 35  
Display; 10  
R
Rechargeable batteries; 23  
Resistance and Rtd measurements; 16  
Resistance and Rtd simulation; 17  
Rj compensation mode check; 31  
Rj mode; 26  
S
E
Safety recommendations; 46  
Scale factor function; 10  
Scale factor program; 32  
Self calibration; 10  
ELECTRICAL CONNECTIONS; 20  
F
Simulation cycle; 31  
Faulty operating conditions; 46  
Firmware; 15  
Firmware version code - Serial number; 34  
FUNCTIONAL DESCRIPTION; 13  
Simulation cycle selection; 29  
Simulation programs; 10  
Specifications; 7  
Square root function; 10  
Storage; 47  
G
T
GENERAL FEATURES; 10  
GENERAL PERFORMANCE; 6  
Table of ranges and accuracies; 9  
Tecnical unit; 26  
Thermocouple wires; 21  
Thermocouples input-output circuit; 17  
TTL to RS 232 adaptor; 36  
I
IN - OUT mode selection; 25  
Increase the life of the battery; 23  
INDEX; 48  
IN-OUT data memories; 27  
Input and output flexibility; 10  
Input circuit; 14  
U
UNPACKING; 18  
Installation parameter procedure; 34  
International Temperature Scale; 26  
INTRODUCTORY NOTE; 3  
W
Wiring practice; 20  
48  
 
WARRANTY/ DISCLAIMER  
OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 13  
months from date of purchase. OMEGA Warranty adds an additional one (1) month grace period to the normal one (1)  
year product warranty to cover handling and shipping time. This ensures that OMEGA’s customers receive maximum  
coverage on each product.  
If the unit should malfunction, it must be returned to the factory for evaluation. OMEGA’s Customer Service Department  
will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA,  
if the unit is found to be defective it will be repaired or replaced at no charge. OMEGA’s WARRANTY does not apply to  
defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing,  
operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit  
shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion;  
or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions  
outside of OMEGA’s control. Components which wear are not warranted, including but not limited to contact points,  
fuses, and triacs.  
OMEGA is pleased to offer suggestions on the use of its various products However, OMEGA neither assumes  
responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its  
products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only  
that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WAR-  
RANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSEO OR IMPUED, EXCEPT THAT OF  
TITLE, AND ALL IMPLIED WARRANTlES INCLUDING ANY WARRANTY OF MERCHANTABIUTY AND RTNESS  
FOR A PARTlCULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATlON OF LIABILITY: The remedies of  
purchaser set forth herein ate exclusive and the total liability of OMEGA with respect to this order, whether  
based on contract, warranty, negligence. Indemnification, strict liability or otherwise, shall not exceed the  
purchase price of the component upon which liability is based. In no event shall OMEGA be liable for  
consequential, incidental or special damages.  
CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a ”Basic Component”  
under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on  
humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on  
humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER  
language, and additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage  
whatsoever arising out of the use of the Product(s) in such a manner.  
RETURN REQUESTS / INQ UIRIES  
Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING  
ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM  
OMEGA’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR  
number should then be marked on the outside of the return package and on any correspondence.  
The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in  
transit.  
FOR WARRANTY RETURNS, please has the  
following information available BEFORE contacting  
OMEGA:  
FOR NON-WARRANTY REPAIRS, consult OMEGA for  
current repair charges. Have the following information  
available BEFORE contacting OMEGA:  
1. P.O. number under which the product was  
PURCHASED,  
1. P.O. number to cover the COST of the repair,  
2. Model and serial number of product, and  
2. Model and serial number of the product under  
warranty, and  
3. Repair instructions and/or specific problems relative to  
the product.  
3. Repair instructions and/or specific problems  
relative to the product.  
OMEGA’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the  
latest in technology and engineering.  
OMEGA is a registered trademark of OMEGA ENGINEERING, INC.  
(C) Copyright 1999 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced,  
translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of OMEGA  
ENGINEERING, INC.  
49  
 
Where Do I Find Everything I Need for  
Process Measurement and Control?  
OMEGA…Of Course!  
TEMPERATURE  
! Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies  
! Wire: Thermocouple, RTD & Thermistor  
! Calibrators & Ice Point References  
! Recorders, Controllers & Process Monitors  
! Infrared Pyrometers  
PRESSURE, STRAIN AND FORCE  
! Transducers & Strain Gauges  
! Load Cells & Pressure Gauges  
! Displacement Transducers  
! Instrumentation & Accessories  
FLOW/LEVEL  
! Rotameters, Gas Mass Flowmeters & Flow Computers  
! Air Velocity Indicators  
! Turbine/Paddlewheel Systems  
! Totalizers & Batch Controllers  
pH/CONDUCTIVITY  
! pH Electrodes, Testers & Accessories  
! Benchtop/Laboratory Meters  
! Controllers, Calibrators, Simulators & Pumps  
! Industrial pH & Conductivity Equipment  
DATA ACQUISITION  
! Data Acquisition & Engineering Software  
! Communications-Based Acquisition Systems  
! Plug-in Cards for Apple, IBM & Compatibles  
! Datalogging Systems  
! Recorders, Printers & Plotters  
HEATERS  
! Heating Cable  
! Cartridge & Strip Heaters  
! Immersion & Band Heaters  
! Flexible Heaters  
! Laboratory Heaters  
ENVIRONMENTAL MONITORING AND CONTROL  
! Metering & Control Instrumentation  
! Refractometers  
! Pumps & Tubing  
! Air, Soil & Water Monitors  
! Industrial Water & Wastewater Treatment  
! pH, Conductivity & Dissolved Oxygen Instruments  
M-3254/1003  
50  
 

Milwaukee Automobile Parts 2205 20 User Manual
NEC Computer Monitor XP29 XM29 Plus User Manual
NETGEAR MP3 Player Accessories MC1101y2 User Manual
NETGEAR Network Router WNR2000 100FSS User Manual
Olympus Camera Accessories V326110SU000 User Manual
Olympus MP3 Player 4100 User Manual
Omron Air Compressor NE C29 E User Manual
One for All Universal Remote 8L User Manual
Palsonic DVD Player DVD9200 User Manual
Panasonic Computer Drive AJ HRW10G User Manual